90 research outputs found

    Advanced load-shift system: an experimental validation of the ac-dc converter as shunt active power filter

    Get PDF
    This paper presents a load-shift system with advanced functionalities to interface the power grid (PG). When compared with the conventional approach, an advanced load-shift system (aLSS) permits the compensation of power quality (PQ) problems for the grid-side, namely problems related to current harmonics, current imbalance, and power factor. The proposed aLSS is composed by a bidirectional ac-dc converter to interface the PG and by a bidirectional dc-dc converter to interface an energy storage system (ESS). Since the main innovation is related with the PG interface, the focus of this work is on the analysis of the ac-dc converter, which is based on a three-phase four-leg converter. A theoretical study and the details concerning the control algorithm are presented and discussed along the paper. A laboratory prototype of the proposed aLSS was developed and the details of implementation are described in the paper. Experimental results obtained with the developed prototype prove that the aLSS contributes for the technology progress in this area, validating a new concept of operation concerning the PQ on the PG side.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2019. This work has been supported by the FCT Project QUALITY4POWER PTDC/EEI-EEE/28813/2017, and by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017

    Improved voltage control of the electric vehicle operating as UPS in smart homes

    Get PDF
    As a contribution for sustainability, electric vehicles (EVs) are seen as one of the most effective influences in the transport sector. As complement to the challenges that entails the EVs integration into the grid considering the bidirectional operation (grid-to-vehicle and vehicle-to-grid), there are new concepts associated with the EV operation integrating various benefits for smart homes. In this sense, this paper proposes an improved voltage control of the EV operating as uninterruptible power supply (UPS) in smart homes. With the EV plugged-in into the smart home, it can act as an off-line UPS protecting the electrical appliances from power grid outages. Throughout the paper, the foremost advantages of the proposed voltage control strategy are comprehensively emphasized, establishing a comparison with the classical approach. Aiming to offer a sinusoidal voltage for linear and nonlinear electrical appliances, a pulse-width modulation with a multi-loop control scheme is used. A Kalman filter is used for decreasing significantly the time of detecting power outages and, consequently, the transition for the UPS mode. The experimental validation was executed with a bidirectional charger containing a double stage power conversion (an ac-dc interfacing the grid-side and a dc-dc interfacing the batteries- side) and a digital stage. The computer simulations and the acquired experimental results validate the proposed strategy in different conditions of operation.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 – POCI – 01–0145–FEDER–016434. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283.info:eu-repo/semantics/publishedVersio

    Spectrum Utilization of Cognitive Radio in Industrial Wireless Sensor Networks - A Review

    Get PDF
    The increasing demand for intelligent control and automation in industry requires better use of the radio spectrum due to the use of industrial wireless sensor networks (IWSNs). Cognitive Radio (CR) is a promising technology to improve the spectrum utilization by sensing spectrum holes. Research in this area is still in its infancy, but it is progressing rapidly. In this paper, industrial environment with different wireless technology, such as WirelessHART and ISA 100.11a is investigated. Various sensing schemes and the challenges associated for the cognitive radio are reviewed. In addition, the paper discussed the methods relevant to industrial applications, covering architecture, spectrum access, interference management, spectrum sensing and spectrum sharing

    The electric vehicle in smart homes: a review and future perspectives

    Get PDF
    The electric mobility dissemination is forcing the adoption of new technologies and operation paradigms, not only focusing on smart grids, but also on smart homes. In fact, the emerging technologies for smart homes are also altering the conventional grids toward smart grids. By combining the key pillars of electric mobility and smart homes, this paper characterizes the paradigms of the electric vehicle (EV) in smart homes, presenting a review about the state of the art and establishing a relation with future perspectives. Since the smart home must be prepared to deal with the necessities of the EV, the analysis of both on board and off board battery charging systems are considered in the paper. Moreover, the in-clusion of renewable energy sources, energy storage systems, and dc electrical appliances in smart homes towards sustainability is also considered in this paper, but framed in the perspective of an EV off board battery charging system. As a pertinent contribution, this paper offers future perspectives for the EV in smart homes, including the possibility of ac, dc, and hybrid smart homes. Covering all of these aspects, exemplificative and key results are presented based on numerical simulations and experimental results obtained with a proof of concept prototype.FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017, and by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FC

    The role of off-board EV battery chargers in smart homes and smart grids: operation with renewables and energy storage systems

    Get PDF
    Concerns about climate changes and environmental air pollution are leading to the adoption of new technologies for transportation, mainly based on vehicle electrification and the interaction with smart grids, and also with the introduction of renewable energy sources (RES) accompanied by energy storage systems (ESS). For these three fundamental pillars, new power electronics technologies are emerging to transform the electrical power grid, targeting a flexible and collaborative operation. As a distinctive factor, the vehicle electrification has stimulated the presence of new technologies in terms of power management, both for smart homes and smart grids. As the title indicates, this book chapter focuses on the role of off-board EV battery chargers in terms of operation modes and contextualization for smart homes and smart grids in terms of opportunities. Based on a review of on-board and off-board EV battery charging systems (EV-BCS), this chapter focus on the off-board EV-BCS framed with RES and ESS as a dominant system in future smart homes. Contextualizing these aspects, three distinct cases are considered: (1) An ac smart home using separate power converters, according to the considered technologies; (2) A hybrid ac and dc smart home with an off-board EV-BCS interfacing RES and ESS, and with the electrical appliances plugged-in to the ac power grid; (3) A dc smart home using a unified 2 off-board EV-BCS with a single interface for the electrical power grid, and with multiple dc interfaces (RES, ESS, and electrical appliances). The results for each case are obtained in terms of efficiency and power quality, demonstrating that the off-board EV-BCS, as a unified structure for smart homes, presents better results. Besides, the off-board EV-BCS can also be used as an important asset for the smart grid, even when the EV is not plugged-in at the smart home.(undefined

    An Aggregate MapReduce Data Block Placement Strategy for Wireless IoT Edge Nodes in Smart Grid

    Get PDF
    Big data analytics has simplified processing complexity of large dataset in a distributed environment. Many state-of-the-art platforms i.e. smart grid has adopted the processing structure of big data and manages a large volume of data through MapReduce paradigm at distribution ends. Thus, whenever a wireless IoT edge node bundles a sensor dataset into storage media, MapReduce agent performs analytics and generates output into the grid repository. This practice has efficiently reduced the consumption of resources in such a giant network and strengthens other components of the smart grid to perform data analytics through aggregate programming. However, it consumes an operational latency of accessing large dataset from a central repository. As we know that, smart grid processes I/O operations of multi-homing networks, therefore, it accesses large datasets for processing MapReduce jobs at wireless IoT edge nodes. As a result, aggregate MapReduce at wireless IoT edge node produces a network congestion and operational latency problem. To overcome this issue, we propose Wireless IoT Edge-enabled Block Replica Strategy (WIEBRS), that stores in-place, partition-based and multi-homing block replica to respective edge nodes. This reduces the delay latency of accessing datasets for aggregate MapReduce and increases the performance of the job in the smart grid. The simulation results show that WIEBRS effective decreases operational latency with an increment of aggregate MapReduce job performance in the smart grid

    Fast Authentication from Aggregate Signatures with Improved Security

    Get PDF
    An attempt to derive signer-efficient digital signatures from aggregate signatures was made in a signature scheme referred to as Structure-free Compact Rapid Authentication (SCRA) (IEEE TIFS 2017). In this paper, we first mount a practical universal forgery attack against the NTRU instantiation of SCRA by observing only 8161 signatures. Second, we propose a new signature scheme (FAAS), which transforms any single-signer aggregate signature scheme into a signer-efficient scheme. We show two efficient instantiations of FAAS, namely, FAAS-NTRU and FAAS-RSA, both of which achieve high computational efficiency. Our experiments confirmed that FAAS schemes achieve up to 100x faster signature generation compared to their underlying schemes. Moreover, FAAS schemes eliminate some of the costly operations such as Gaussian sampling, rejection sampling, and exponentiation at the signature generation that are shown to be susceptible to side-channel attacks. This enables FAAS schemes to enhance the security and efficiency of their underlying schemes. Finally, we prove that FAAS schemes are secure (in random oracle model), and open-source both our attack and FAAS implementations for public testing purposes
    • …
    corecore